skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hurst, Paul Joshua"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this work, by using drugs as a catalyst coupled with a polymerization-induced self-assembly process, we synthesise drug-polymer particles in one pot compared to a standard stepwise process. 
    more » « less
  2. We elucidate the mechanisms of chemically driven self-assembly processes, demonstrating how synchronous assembly–disassembly reactions can stabilize transient structures and create morphologies that differ from conventional assemblies. 
    more » « less
  3. Abstract Polymerization‐induced self‐assembly (PISA) has emerged as a scalable one‐pot technique to prepare block copolymer (BCP) nanoparticles. Recently, a PISA process, that results in poly(l‐lactide)‐b‐poly(ethylene glycol) BCP nanoparticles coined ring‐opening polymerization (ROP)‐induced crystallization‐driven self‐assembly (ROPI‐CDSA), was developed. The resulting nanorods demonstrate a strong propensity for aggregation, resulting in the formation of 2D sheets and 3D networks. This article reports the synthesis of poly(N,N‐dimethyl acrylamide)‐b‐poly(l)‐lactide BCP nanoparticles by ROPI‐CDSA, utilizing a two‐step, one‐pot approach. A dual‐functionalized photoiniferter is first used for controlled radical polymerization of the acrylamido‐based monomer, and the resulting polymer serves as a macroinitiator for organocatalyzed ROP to form the solvophobic polyester block. The resulting nanorods are highly stable and display anisotropy at higher molecular weights (>12k Da) and concentrations (>20% solids) than the previous report. This development expands the chemical scope of ROPI‐CDSA BCPs and provides readily accessible nanorods made with biocompatible materials. 
    more » « less